

Spectrophotometric Determination of Biotin in Drug Samples using Ligand Substitution Reaction

Srivastava A.¹, Srivastava N.² and Singh R.^{3*}

1. Department of Chemistry, GLA University, Mathura, U.P., INDIA

2. Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur, U.P., INDIA

3. Department of Chemistry, B.N. College of Engineering and Technology, Lucknow, U.P., INDIA

*ruchi.sng@gmail.com

Abstract

A spectrophotometric approach that is straightforward, efficient, highly sensitive and precise has been devised to quantify biotin (BTN) in both its pure state and pharmaceutical samples. The methodology relies on the inhibitory approach of BTN on the Hg(II) promoted ligand substitution (LS) reaction involving pyrazine (PYZ) and hexacyanoferrate(II). The process entails replacing cyanide in $[Fe(CN)_6]^{4-}$ with PYZ, triggering the development of a complex $[Fe(CN)_5PYZ]^{3-}$. The complex demonstrates a significant absorption level at a specific wavelength of 370 nm. The established limit of detection for BTN is $0.075\mu\text{g mL}^{-1}$.

Recovery experiments were conducted to confirm the precision and accuracy of BTN quantification. The suggested approach has been effectively utilized for the examination of BTN in pristine samples and various medications, demonstrating remarkable levels of precision and accuracy. The outcomes showed good agreement when compared to the findings of the official analytical method. The excipients typically employed in medicines do not exhibit any interference with the suggested methodology.

Keywords: Ligand substitution reaction, Inhibitory approach, Biotin determination, Pharmaceutical preparations, Kinetic-spectrophotometric, Hexacyanoferrate (II).

Introduction

Biotin is a water-soluble B-complex vitamin that is present in certain foods and can also be obtained through supplements. Biotin promotes the health of eyes, hair and skin and also plays a crucial role in facilitating enzymes to metabolize proteins, carbohydrates and fats in food^{2,25}. Additionally, it aids in the regulation of cellular signaling and gene activity^{21,39}. Notable dietary sources of biotin with high levels include the pancreas, heart, kidneys, liver, milk, chicken and egg yolk. Plants, primarily in their seeds, contain smaller amounts¹⁸. People in Western Nations are thought to consume 35 to 70 mg of biotin per day through diet, with nearly all of that amount being absorbed¹⁹. For healthy adults, a daily intake of 35 mg of biotin through diet is deemed sufficient. Inadequate biotin ingestion has been documented to cause significant biochemical abnormalities

in animal organisms including decreased antibody production, suppression of protein and RNA synthesis and diminished carboxylase activity^{5,17}.

Serious animal syndromes like the trout "blue slime", kidney syndrome (FLKS) and avian fatty liver disease appear to be linked to biotin deficiency⁴¹. Extended lack of biotin in the human body can result in the development of pathological symptoms that can be alleviated by the administration of biotin¹⁷. A biotin deficiency has been linked to severe human disease states such as multiple carboxylase deficiency (MCD), an inherited metabolic syndrome¹⁵. There is also a correlation between biotin deficiency and various human malfunctions, such as Rett syndrome, Leiner disease, Seborrheic dermatitis of infancy and Sudden Infant Death Syndrome (SIDS)⁴³. Figure 1 demonstrates the structure of biotin.

Surfactants serve as vital constituents in pharmaceuticals as they are composed of both hydrophilic and hydrophobic groups. Surfactants find application in the pharmaceutical industry in various ways: i) to facilitate the solubilization of hydrophobic drugs in aqueous solutions; ii) to serve as constituents of emulsions; iii) functioning as plasticizers in semisolid delivery systems; iv) to function as self-assembling vehicles for surfactant-based oral and transdermal drug delivery and v) employed as agents to enhance drug absorption and penetration^{6,22}. The surfactant's aqueous solution demonstrates electrolytic behavior when present in low concentrations. Micellization occurs in an aqueous environment due to the presence of a substrate containing hydrophobic as well as hydrophilic components. The concentration at which surfactants spontaneously generate micelles is referred to as the critical micelle concentration (CMC)²⁴.

The CMC of ammonium dodecyl sulfate (ADS), an anionic surfactant, at a temperature of 298 K is $7.1 \times 10^{-3} \text{ M}^{11,14,37}$. When compared to pure solvents, reactants that are bound within micelles encounter a completely different reaction atmosphere. Understanding the factors that influence the reaction rate in a micellar medium is crucial. One of these factors is the extent of interaction between the substrate and the micelle aggregates.

For centuries, sulfur has consistently been the primary heteroatom in the extensive array of bioactive compounds, insecticides and fungicides. In numerous metabolism processes, organosulfur compounds play an essential role as enzymes or structural proteins^{1,12,36}. Because of the

fundamental significance of the ligand exchange and oxidation-reduction reactions of complexes consisting of transition metals in synthetic, organometallic and analytical chemistry, a significant number of researchers got motivated to investigate the kinetics of these processes^{10,27,29,31}. Some authors have documented kinetic studies of nitrogen heterocyclic ligands substituting cyanide from Ru/Fecyno complexes^{28,33,34}. These approaches have additionally been deployed to effectively evaluate the employed catalysts and moieties that have a significant interaction with the catalyst^{26,30,35}.

Chromatographic approaches such as capillary electrophoresis have been extensively employed to analyze biotin in pharmaceutical samples²⁰. Nevertheless, the practical use of several of these techniques is restricted by their lack of sensitivity¹³. Although HPLC can be valuable in analyzing low levels of BTN in basic substances, its procedure is quite complex. Before the determination can be made, BTN needs to be extracted or separated, which not

only makes the process tedious but also raises the risk of potential errors¹³. Ultraviolet (UV) detection is a frequently utilized method in liquid chromatographic techniques. This involves measuring the absorbance of BTN after pre-column derivatization utilizing a suitable modifying reagent^{3,4}.

However, the procedures necessary to separate BTN before subsequent UV or colorimetric measurement are arduous and hectic⁴². So most of the methods described in scientific literature for measuring biotin are not very sensitive and involve complex sample preparation. They often require heating and extended cooling periods before analysis can be performed. Among the different methods used to determine this drug, there are several drawbacks to consider. These include the need for specialized equipment which is often not readily accessible in many quality control laboratories and universities in developing countries¹³. Table 1 demonstrates the different physicochemical approaches for the determination of biotin.

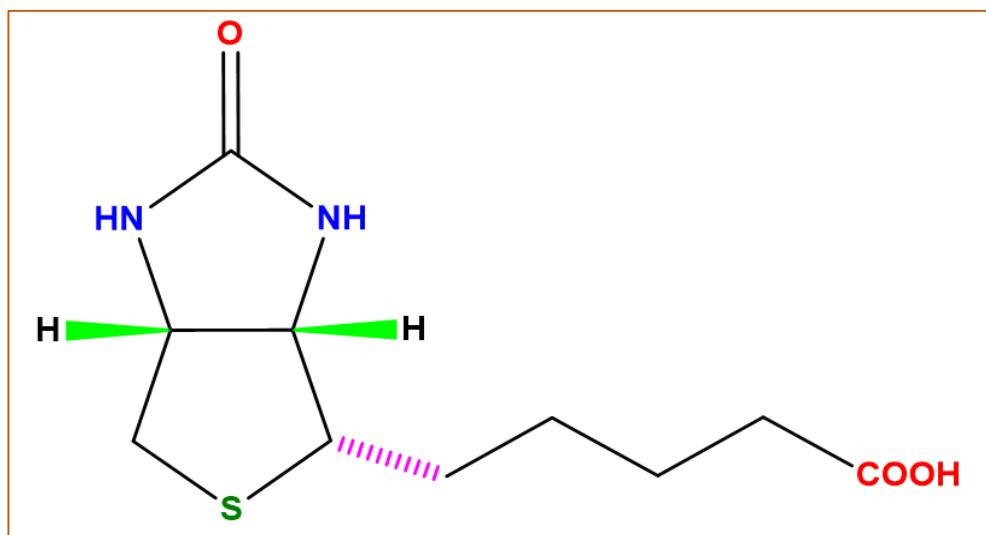


Figure 1: Structure of biotin

Table 1
Comparative studies for the quantification of Biotin using different methods

Method	Description	Detection Limit
HPLC-UV ³	C ₁₈ column was used	1.0 µg/mL
HPLC and micellar electrokinetic capillary chromatography (MEKC) ⁸	Study was performed in micellar medium	0.15 µg/mL
Kinetic Spectrophotometric ⁴⁰	Utilizing biotin's catalytic impact on the tri-iodide-sodium azide reaction	0.15 µg/mL
Spectrofluorimetric ²³	Used 4-fluoro-7-nitrobenzofurazan to derivatize biotin	0.038 ng/mL
RP-HPLC ⁷	Biotin was determined in multivitamin-multimineral tablets	Detection range: 0.5-2.0 µg/mL
TLC ⁹	Biotin was determined in the presence of all water-soluble vitamins	0.15 µg/ml
Kinetic spectrophotometric*	Based on the inhibitory kinetic approach	0.075 µg/ml

*This work

The analysis of biotin in biological and pharmaceutical samples is crucial for understanding its therapeutic evaluation and bioavailability during patient follow-up. Regular testing by laboratories for medications in the market is crucial to safeguard the public's well-being, particularly in developing nations where the widespread presence of spurious and substandard drugs presents a significant obstacle to healthcare services. Hence, there is an additional requirement for the advancement of uncomplicated, cost-effective, highly responsive and precise techniques to evaluate the quality of pharmaceuticals available in the market.

Due to the high cost associated with many reported methods, we have come up with an in-house ligand substitution kinetic assay for BTN. The utilization of this technique aligns with our continuous pursuit of exploring analytical methodologies that depend on catalytic ligand substitution and oxidation reactions^{26,30,35}. Organosulfur molecules considerably decrease the catalytic potency of Hg^{2+} by making a strong complex with Hg^{2+} . The experimental protocol relies on the inhibitory effect of BTN regarding the cyanide substitution from $[\text{Fe}(\text{CN})_6]^{4-}$ with PYZ, facilitated by Hg^{2+} .

Material and Methods

Reagents and Chemicals: To prepare the solutions of the desired concentrations, AR grade mercury(II) chloride (Merck), biotin (Himedia), ammoniumdodecyl sulfate (Sigma-Aldrich), pyrazine (Merck) and potassium hexacyanoferrate(II) (Merck) were utilized. The standard solutions of 1.0×10^{-2} M biotin and 5.0×10^{-2} M potassium hexacyanoferrate(II) were prepared by precisely weighing their estimated quantities in double distilled de-ionized water. A dark amber-colored bottle was utilized to store the potassium hexacyanoferrate(II) solution to prevent photodegradation and oxidation.

To ensure the pH of the reacting mixture remained at 2.45 ± 0.01 , a phthalate buffer was employed. The pH meter was standardized using the standard BDH buffers before use. The ionic strength of the reaction mixture was maintained by employing sodium nitrate (Merck). The volumetric apparatus utilized in the current investigation was of certified 'A' grade and underwent regular steaming before its utilization. The hexacyanoferrate(II) and mercury(II) solutions were appropriately diluted before utilization in order to mitigate potential uncertainties arising from the adsorption of Hg^{2+} ions on glass and to prevent the photodegradation and oxidation of hexacyanoferrate(II).

Apparatus: The pH of the reaction mixture was regulated employing a Lab Junction pH Meter (model LJ-111), which was validated with a prescribed buffer solution. A double-beam T65 UV-visible spectrophotometer made by PG Instruments Limited was deployed for the acquisition of product absorption spectra and to measure absorbance at a specified wavelength. The self-designed circulating water

arrangement system kept the cell compartment at a constant temperature.

Procedure: The reactant concentration and other parameters were chosen so that the reaction's initial rate and sensitivity demonstrated their maximums. The temperature during the experiments was 298K. Thus, the reactants were pre-immersed in a thermostat for 30 minutes to maintain their temperature at 298 ± 0.1 K during each kinetic run. The substitution reaction under investigation was conducted in an acidic environment, with the pH of all the reactants meticulously calibrated to 2.45 ± 0.01 , which is considered the optimal value. In a volumetric flask, the reactants with specified concentrations were scrupulously mixed in a precise sequence. The PYZ, ADS, Hg^{2+} and buffer were added first, followed by the substrate $[\text{Fe}(\text{CN})_6]^{4-}$ solution which was added just before each kinetic run. The reaction mixture was carefully transferred to a spectrophotometric cuvette with a 10 mm path length, ensuring that it was properly shaken. The cuvette was subsequently placed within a cell compartment that was regulated by temperature.

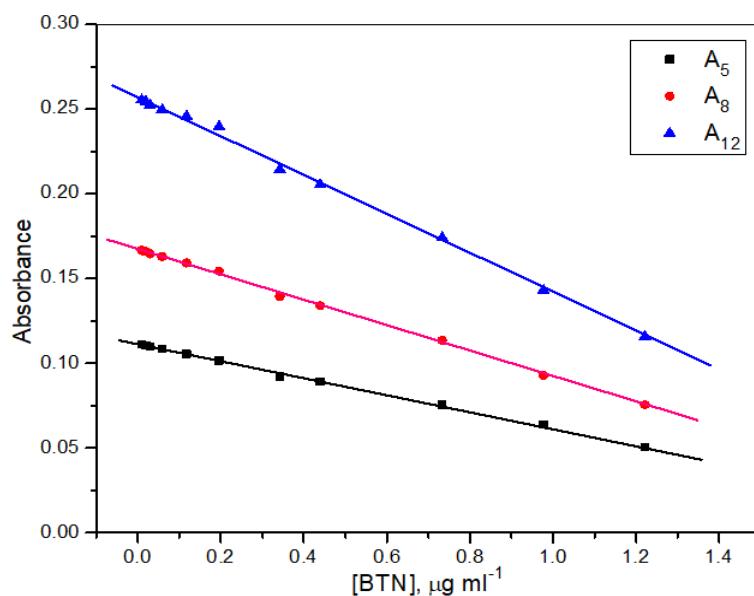
The monitoring of the reaction progress involved determining the reaction's initial rate by computing a rise in absorbance corresponding to $[\text{Fe}(\text{CN})_5\text{PYZ}]^{3-}$. The complex was generated as a result of the reaction and demonstrated pronounced absorption at a wavelength of 370 nm, with no disruption from the reacting agents^{16,32}. The fixed time absorbance was utilized as a metric to optimize the relationship between the reaction variables and the initial rate. Under optimal circumstances, three calibration models were developed that involved the correlation between the absorbance at fixed times and reported [BTN]. The optimal conditions for quantifying [BTN] and in unknown samples were determined by preparing a series of solution specimens containing varying known levels of BTN followed by recovery procedures.

Results and Discussion

The reaction occurring between PYZ and $[\text{Fe}(\text{CN})_6]^{4-}$ is expedited by $\text{Hg}(\text{II})$, resulting in the development of the anionic compound $[\text{Fe}(\text{CN})_5\text{PYZ}]^{3-}$. The regeneration of the catalytic species, Hg^{2+} , occurs in an acidic environment. Through the examination of the slope ratio and mole ratio of the finished product of the reaction, it has been ascertained that the reaction involving PYZ and $[\text{Fe}(\text{CN})_6]^{4-}$ takes place in a mole ratio of 1:1. No modifications were implemented to the absorption measurements as, when the final reaction product was excluded, neither of the interacting solutions demonstrated noticeable absorption at the assessed wavelength.

Procedure for the assay of pure Biotin: The calibration graphs for the analytical quantification of BTN was established by varying the BTN concentration within the range of $0.016\text{-}1.212 \mu\text{g ml}^{-1}$ while maintaining optimal reaction conditions: $[\text{Fe}(\text{CN})_6]^{4-} = 3.25 \times 10^{-5}\text{M}$, temperature

$= 298 \pm 0.1$ K, $[ADS] = 7.25 \times 10^{-3}$ M, $I = 0.05$ M ($NaNO_3$), $[PYZ] = 4.75 \times 10^{-4}$ M, $pH = 2.45 \pm 0.01$ and $[Hg^{2+}] = 2.5 \times 10^{-5}$ M. The relationship between the $[BTN]$ and absorbance at a fixed time (5, 8 and 12 minutes), using the linear least-squares treatment was observed to be linear within the band of concentrations under investigation (Figure 2).


Based on the experimental findings, the optimal time intervals of 5, 8 and 12 minutes were selected due to their superior sensitivity and correlation coefficient as indicated in table 2. The figures of merit i.e. the values of slope (b), intercept (a), correlation coefficient (r) and sensitivity are given in table 2. Hence, the concentration of BTN can be determined by employing the calibration/regression equation $A_t = b [BTN] + a$, where a and b represent the intercept and slope respectively and A_t denotes the absorbance measured at specific time intervals ($t = 5, 8$ and 12 minutes).

The accuracy of the approach suggested was validated through multiple individual measurements for the retrieval of BTN from solutions with different concentrations employing the A_5 calibration curve under optimal conditions. The findings are presented in table 3. The experimental recoveries, when comparing the detected

concentrations to the injected concentrations within the calibrated range, varied between 98% and 101%. The threshold for detection of BTN was established as $0.075 \mu g mL^{-1}$. The study utilized a redesigned mechanistic approach, (equations 1–5) to demonstrate the inhibitory effect of BTN on the Hg^{2+} catalyzed cyanide exchange from $[Fe(CN)_6]^{4-}$ by PYZ. The speculated mechanism bears resemblance to the process catalyzed by an enzyme in the presence of an inhibitor.

Interferences study: Excipients are non-reactive substances employed in pharmaceutical products to serve as preservatives, coloring agents and fillers alongside their primary medicinal constituents. The proposed approach was evaluated for its potential analytical applications through recovery trials conducted under optimal reaction settings which involved the use of $0.45 \mu g$ of BTN and a 100-fold concentration of common excipients.

The A_5 calibration model was employed for this evaluation. The obtained findings indicate that the incorporation of commonly used additives in pharmaceutical products does not exert a substantial influence on the quantification of BTN using the suggested methodology, despite their presence being 100 times greater than that of BTN (Table 4).

Figure 2: Linear regression calibration plots at fixed times, $t = 5, 8$ and 12 minutes under the condition: $[Fe(CN)_6]^{4-} = 3.25 \times 10^{-5}$ M, Temperature = 298 ± 0.1 K, $[ADS] = 7.25 \times 10^{-3}$ M, $I = 0.05$ M ($NaNO_3$), $[PYZ] = 4.75 \times 10^{-4}$ M, $pH = 2.45 \pm 0.01$ and $[Hg^{2+}] = 2.5 \times 10^{-5}$ M

Table 2

Regression equations, sensitivity and correlation coefficient of calibration graphs at fixed times under optimized conditions: $[Fe(CN)_6]^{4-} = 3.25 \times 10^{-5}$ M, Temperature = 298 ± 0.1 K, $[ADS] = 7.25 \times 10^{-3}$ M, $I = 0.05$ M ($NaNO_3$), $[PYZ] = 4.75 \times 10^{-4}$ M, $pH = 2.45 \pm 0.01$ and $[Hg^{2+}] = 2.5 \times 10^{-5}$ M

Time (min)	[BTH], $\mu g mL^{-1}$	Regression/Calibration equation	Correlation coefficient	Sensitivity
5	0.0098-1.2216	$0.493 \times 10^5 [BTH] + 0.1112$	0.9986	0.493×10^5
8	0.0098-1.2216	$0.754 \times 10^5 [BTH] + 0.1674$	0.9988	0.754×10^5
12	0.0098-1.2216	$1.159 \times 10^5 [BTH] + 0.2573$	0.9979	1.159×10^5

Table 3

Accuracy and precision of the recommended methodology for the determination of BTN at $[Fe(CN)_6^{4-}] = 3.25 \times 10^{-3} M$, Temperature = $298 \pm 0.1 K$, $[ADS] = 7.25 \times 10^{-3} M$, $I = 0.05 M$ ($NaNO_3$), $[PYZ] = 4.75 \times 10^{-4} M$, $pH = 2.45 \pm 0.01$ and $[Hg^{2+}] = 2.5 \times 10^{-5} M$

BTH added ($\mu g\ ml^{-1}$)	BTH found ^a ($\mu g\ ml^{-1}$)	Recovery (%)	Error (%)
0.016	0.0163 ± 0.04	101.9	+ 1.88
0.029	0.0295 ± 0.03	101.7	+ 1.72
0.068	0.067 ± 0.06	98.5	- 1.47
0.146	0.145 ± 0.02	99.3	- 0.68
0.332	0.334 ± 0.07	100.6	+ 0.60
0.430	0.438 ± 0.05	101.9	+ 1.86
0.743	0.736 ± 0.07	99.1	- 0.94
0.967	0.959 ± 0.09	99.2	- 0.83
1.212	1.206 ± 0.10	99.5	- 0.50

^aAverage of three determinations.

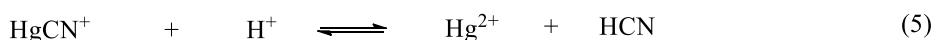
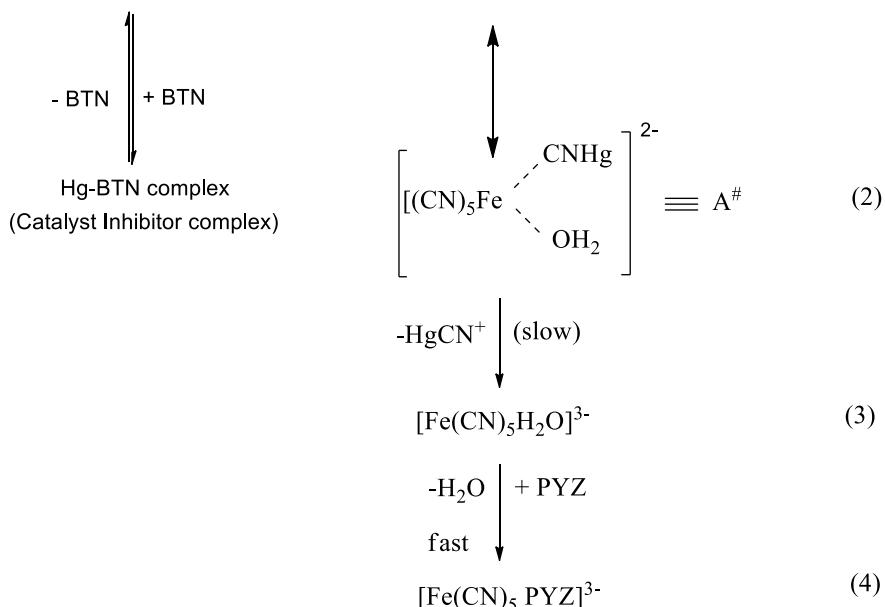
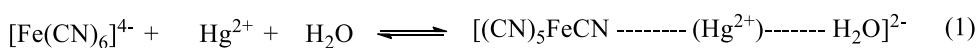




Table 4

Findings from BTN recovery experiments conducted with common excipients at: $[Fe(CN)_6]^{4-} = 3.25 \times 10^{-3} M$, Temperature = $298 \pm 0.1 K$, $[ADS] = 7.25 \times 10^{-3} M$, $I = 0.05 M$ ($NaNO_3$), $[PYZ] = 4.75 \times 10^{-4} M$, $pH = 2.45 \pm 0.01$ and $[Hg^{2+}] = 2.5 \times 10^{-5} M$

Excipients	Amount taken (μg)	INH found ^a (μg)	Recovery (%)
Oxalate	45	0.444	98.7 ± 0.6
Stearate	45	0.460	102.2 ± 0.6
Gelatin	45	0.457	101.6 ± 0.4
Dextrose	45	0.448	99.6 ± 0.6
Citrate	45	0.444	98.6 ± 0.5
Glucose	45	0.446	99.1 ± 0.9
Nicotinamide	45	0.453	100.7 ± 0.5
Starch	45	0.447	99.3 ± 0.3
Lactose	45	0.455	101.1 ± 0.8

^aAverage of three determinations.

Table 5

Comparative analysis of BTN quantification in pharmaceutical samples with the official method at: $[Fe(CN)_6^{4-}] = 3.25 \times 10^{-3} M$, Temperature = $298 \pm 0.1 K$, $[ADS] = 7.25 \times 10^{-3} M$, $I = 0.05 M$ ($NaNO_3$), $[PYZ] = 4.75 \times 10^{-4} M$, $pH = 2.45 \pm 0.01$ and $[Hg^{2+}] = 2.5 \times 10^{-5} M$

Drug (Tablets)	Proposed Approach [Recovery \pm SD (%)]	Standard Approach [Recovery \pm SD (%)]
Biosort-5, 5 mg Tablet (Consent Pharma Ltd., Punjab, India)	101.28 ± 0.41	100.71 ± 0.58
VB-7 5 mg Tablet (Intas Pharmaceutical Ltd. Sikkim, India)	102.09 ± 0.71	101.25 ± 0.65
Boit-5, 5 mg Tablet (Premier Medical Agency, Maharashtra, India)	98.97 ± 0.66	99.13 ± 0.51
Essvit, 5 mg Tablet (Sun Pharmaceuticals Ind. Ltd. Mumbai, India)	99.53 ± 0.57	100.22 ± 0.36
Biotal-10, 10 mg Tablet (Cosmederma, Haryana, India)	100.38 ± 0.74	101.08 ± 0.81
H-Vit, 5 mg Tablet (Systopic Laboratories Pvt. Ltd., New Delhi, India)	99.73 ± 0.44	100.46 ± 0.82
Treslong-5, 5 mg Tablet (Allwell Healthcare Solutions, Amravati, India)	99.68 ± 0.75	99.93 ± 0.48

Quantification of BTN in medicinal formulations:

Weighing the biotin tablets allowed us to calculate their average mass per tablet. After being precisely weighed, a fraction of the final product corresponding to 100 mg of BTN was added to a 100 ml standardized flask that held 70 ml of doubled distilled water. The flask's contents were subjected to sonication for approximately 15 minutes, followed by the addition of de-ionized water to reach a final volume of 100 ml. Finally, the solution underwent filtration using a Whatmann filter paper (0.45 μm Milli-pore). The drug's intended concentrations were achieved through precise dilutions using double distilled water. The analysis of the solution was conducted directly utilizing the calibration model developed by the aforementioned procedure for the quantification of pure BTN, without requiring any extraction or pre-treatment procedures.

The analysis of BTN content was performed on seven distinct pharmaceutical samples and the findings are displayed in table 5. A statistical comparison was made between the results and the standard approach in terms of accuracy and precision. The outcomes of the developed method for determining BTN were found to be highly congruent with those of the standard approach³⁸. The average recoveries ranged from 98% to 102%, indicating that the developed approach is suitable for rapidly determining BTN in pharmaceutical products.

Conclusion

We have developed a ligand-substitution-kinetic spectrophotometric method that is precise, sensitive, swift, cost-efficient and practical for quantifying BTN. This approach utilizes the inhibitory effect of BTN on the Hg^{2+} catalyzed ligand exchange reaction involving PYZ and $[Fe(CN)_6]^{4-}$. The technique was utilized to quantify BTN in drug samples and the outcomes exhibited a strong correlation with those derived from the standard approach.

The proposed methodology offers several advantages compared to various spectrophotometric techniques. It eliminates the need for extraction, heating and the use of oxidants, organic dyes, or catalysts, thereby reducing potential sources of inaccuracy in the measurement of BTN.

The data from the restoration study has unambiguously confirmed the method's accuracy and repeatability. The proposed LS-kinetic assay is highly suitable for the quantification of BTN in pharmaceutical formulations and has the potential to decrease the time required for analysis. Hence, the suggested approach can be effectively utilized for regular auditing of the biotin and other medications.

References

1. Abadie C. and Tcherkez G., Plant sulphur metabolism is stimulated by photorespiration, *Communications Biology*, **2**, 379 (2019)
2. Almohanna H.M., Ahmed A.A. and Tsatalis J.P., The Role of Vitamins and Minerals in Hair Loss: A Review, *Dermatologic Therapy*, **9**, 51-71 (2019)
3. Chastain J.L., Bowers-Komro D.M. and McCormick D.B., High-performance liquid chromatography of biotin and analogues, *Journal of Chromatography*, **330**, 153-158 (1985)
4. Crivelli S.L., Quirk P.F. and Steible D.J., A Reversed-Phase High-Performance Liquid Chromatographic (HPLC) Assay for the Determination of Biotin in Multivitamin–Multimineral Preparations, *Pharmaceutical Research*, **4**, 261-262 (1987)
5. Dakshinamurti K., Dakshinamurti S. and Czubryt M.P., Effects of Biotin Deprivation and Biotin Supplementation, In Preedy V. and Patel V., eds., *Handbook of Famine, Starvation and Nutrient Deprivation*, Springer, Cham (2017)
6. Das B., Kumar B., Begum W., Bhattacharai A., Mondal M.H. and Saha B., Comprehensive Review on Applications of Surfactants in

Vaccine Formulation, Therapeutic and Cosmetic Pharmacy and Prevention of Pulmonary Failure due to COVID-19, *Chemistry Africa*, **5**, 459-480 (2022)

7. Ekpe A.E. and Hazen C., Liquid chromatographic determination of biotin in multivitamin-multimineral tablets, *Journal of Pharmaceutical and Biomedical Analysis*, **16**, 1311-1315 (1998)

8. Gadzala-Kopciuch R., Szumski M. and Busewski B., Determination of biotin in pharmaceutical preparations by means of HPLC and/or MECK, *Journal of Liquid Chromatography & Related Technologies*, **26**, 195-205 (2023)

9. Gröningsson K. and Jansson L., TLC determination of biotin in a lyophilized multivitamin preparation, *Journal of Pharmaceutical Sciences*, **68**, 364-366 (1979)

10. Iioka T., Takahashi S., Yoshida Y., Matsumura Y. and Hiraoka S. and Sato H., A kinetics study of ligand substitution reaction on dinuclear platinum complexes, Stochastic versus deterministic approach, *Journal of Computational Chemistry*, **40**, 279-285 (2019)

11. Kang K.H., Kim H.U. and Lim K.H., Effect of temperature on critical micelle concentration and thermodynamic potentials of micellization of anionic ammonium dodecyl sulfate and cationic octadecyltrimethyl ammonium chloride, *Colloids Surf A, Physicochemical and Engineering Aspects*, **189**, 113-121 (2001)

12. Kolluru G.K., Shen X. and Kevil C.G., Reactive sulfur species, a new redox player in cardiovascular pathophysiology, *Arterioscler. Thrombosis and Vascular Biology*, **40**, 874-884 (2020)

13. Livaniou E., Costopoulou D., Vassiliadou I., Leondiadis L., Nyalala J.O., Ithakissios D.S. and Evangelatos G.P., Analytical techniques for determining biotin, *Journal of Chromatography*, **881**, 331-343 (2000)

14. Mukerjee P. and Mysels K.J., Critical Micelle Concentrations of Aqueous Surfactant Systems United States Department of Commerce, National Bureau of Standards accessed June 2022 (1971)

15. Mukhopadhyay D., Das M.K., Dhar S. and Mukhopadhyay M., Multiple carboxylase deficiency (late onset) due to deficiency of biotinidase, *Indian Journal of Dermatology*, **59**, 502-504 (2014)

16. Naik R.M., Tiwari P.K., Singh P.K. and Yadav S.B.S., The silver(I)-catalyzed exchange of coordinated cyanide in hexacyanoferrate(II) by phenylhydrazine in aqueous medium, *International Journal of Chemical Kinetics*, **39**, 447-456 (2007)

17. Oca M., Gutiérrez-Ospina G., Salcedo P., Fuentes-Farías A., Meléndez-Herrera E., Gómez-Chavarín M. and Báez-Saldaña A., Differential effect of biotin on carboxylase activity and mice skeletal muscle metabolism, *Advances in Bioscience and Biotechnology*, **4**, 43-50 (2013)

18. Ofoedu C.E., Iwouno J.O., Ofoedu E.O., Ogueke C.C. and Okpala C.O.R., Revisiting food-sourced vitamins for consumer diet and health needs: a perspective review, from vitamin classification, metabolic functions, absorption, utilization, to balancing nutritional requirements, *Peer J*, **9**, e11940 (2021)

19. Patel D.P., Swink S.M. and Castelo-Soccio L., A Review of the Use of Biotin for Hair Loss, *Skin Appendage Disorders*, **3**, 166-169 (2017)

20. Pérez-Ruiz T., Martínez-Lozano C. and Sanz A., Electrophoretic Behaviour of biotin and biocytin in capillary electrophoresis determination of biotin in pharmaceutical formulations, *Chromatographia*, **58**, 757-762 (2003)

21. Satiaputra J., Shearwin K.E., Booker G.W. and Polyak S.W., Mechanisms of biotin-regulated gene expression in microbes, *Synthetic and System Biotechnology*, **1**, 17-24 (2016)

22. Sekhon B.S., Surfactants: Pharmaceutical and Medicinal Aspects, *Journal of Pharmaceutical Technology, Research and Management*, **1**, 43-68 (2013)

23. Sevgi T.U., Spectrofluorimetric Determination and Validation of Biotin in Pure and Dosage Form via Derivatization with 4-Fluoro-7-nitrobenzofuran, *Chinese Journal of Chemistry*, **28**, 2209-2015 (2010)

24. Shah S., Chatterjee S.K. and Bhattacharai A., The effect of methanol on the micellar properties of dodecyltrimethylammonium bromide (dtab) in aqueous medium at different temperatures, *Journal of Surfactants and Detergents*, **19**, 201-207 (2016)

25. Solvik B.S. and Strand T.A., Biotin: a scoping review for Nordic Nutrition Recommendations, 2023, *Food & Nutrition Research*, **68**, 10256 (2024)

26. Srivastava A. and Srivastava K., A Simple and Sensitive Inhibitory Kinetic Method for the Methionine Determination, *Physical Chemistry Research*, **10**, 283-292 (2022)

27. Srivastava A., Manjusha, Srivastava N. and Naik R.M., Kinetic Study of Ru(III) Promoted Oxidation of L-Tryptophan in an Anionic Surfactant Medium by Hexacyanoferrate(III), *Journal of Mexican Chemical Society*, **67**, 46-59 (2023)

28. Srivastava A., Quantitative Estimation of D-Penicillamine in Pure and Pharmaceutical Samples Using Inhibitory Kinetic Spectrophotometric Method, *Biointerface Research in Applied Chemistry*, **11**, 16654-16663 (2021)

29. Srivastava A., Sharma V., Prajapati A., Srivastava N. and Naik R.M., Spectrophotometric determination of ruthenium utilizing its catalytic activity on oxidation of hexacyano ferrate(II) by periodate ion in water samples, *Chemistry and Chemical Technology*, **13**, 275-279 (2019)

30. Srivastava A., Sharma V., Singh V.K. and Srivastava K., A Simple and Sensitive Inhibitory Kinetic Method for the Carbocisteine Determination, *Journal of Mexican Chemical Society*, **66**, 57-69 (2022)

31. Srivastava A., Singh R., Srivastava N. and Naik R.M., Kinetic study of Ru(III) – catalyzed oxidation of L-phenylalanine by hexacyanoferrate(III) in an anionic surfactant medium, *Tenside Surfactants Detergents*, **60**, 376-386 (2023)

32. Srivastava A., Singh V.K. and Srivastava N., Kinetic Study of Hg(II)-Promoted Cyanide Substitution from Hexacyanoferrate(II)

in an Anionic Surfactant Medium by N-R-Salt, *Russian Journal of Physical Chemistry*, **97**, 587-595 (2023)

33. Srivastava A., Srivastava N. and Singh R., Determination of alpha-lipoic acid in pharmaceutical samples using inhibitory kinetic approach in SLS micellar medium, *Indian Journal of Chemistry*, **62**, 931-939 (2023)

34. Srivastava A., Srivastava N. and Srivastava K., Cu(II) catalyzed oxidation of L-phenylalanine in cationic micellar medium, *South African Journal of Chemistry*, **77**, 143-149 (2023)

35. Srivastava A., Srivastava N., Srivastava K., Naik R.M. and Srivastava A., Inhibitory Kinetic Approach for the Rapid Micro-Level Quantification of N-Acetylcysteine, *Russian Journal of Physical Chemistry*, **96**, 3082-3089 (2022)

36. Tang K., Chemical diversity and biochemical transformation of biogenic organic sulfur in the ocean, *Frontiers in Marine Science*, **7**, 68 (2020)

37. Tcacenco C.M., Zana R. and Bales B.L., Effect of the nature of the counterion on the properties of anionic surfactants. 5. Self-association behavior and micellar properties of ammonium dodecyl sulfate, *Journal of Physical Chemistry B*, **109**, 15997-16004 (2005)

38. The National Formulary 25, Rockville M.D., US Pharmacopeial Convention, The United States Pharmacopoeia 30, Electronic version (2007)

39. Wal A., Sasmal A., Singh R., Yadav P., Singh Y., Garg V. and Wal P., Regulatory Role, Mechanism and Metabolic Profile of BIOTIN in Gene Expression, *Current Pharmacogenomics and Personalized Medicine*, **20**, 73-86 (2023)

40. Walash M.I., Rizk M., Sheribah Z.A. and Salim M.M., Kinetic spectrophotometric determination of biotin in pharmaceutical preparations, *International Journal of Biomedical Science*, **4**, 238-244 (2008)

41. Watkins B.A., Influences of biotin deficiency and dietary trans-fatty acids on tissue lipids in chickens, *British Journal of Nutrition*, **61**, 99-111 (1989)

42. Yokoyama T. and Kinoshita T., High-performance liquid chromatographic determination of biotin in pharmaceutical preparations by post-column fluorescence reaction with thiamine reagent, *Journal of Chromatography*, **542**, 365-372 (1991)

43. Zempleni J., Hassan Y.I. and Wijeratne S.S., Biotin and biotinidase deficiency, *Expert Review in Endocrinology & Metabolism*, **3**, 715-724 (2008).

(Received 26th May 2024, accepted 26th July 2024)